tetrahedral environment, donating two hydrogen bonds as an $>\mathrm{NH}_{2}^{+}$group. All three hydrogen bonds involving the O^{-}atom are short: 2.566 (3) to $\mathrm{O}(2), 2 \cdot 660(4)$ to $\mathrm{N}(1)$ and $2 \cdot 672(4) \AA$ to $\mathrm{O}(3)$. These distances, and the virtual equality of the $\operatorname{CCO}(1)$ angles [$120.7(3)$ and $\left.121.4(3)^{\circ}\right]$, confirm the charged nature and lack of a proton on this atom. For each quinol OH group, the CCO angles are unequal, on account of the repulsion between the hydroxyl H atom and the CH group in the adjacent ortho position (see Fig. 3).

The neutral quinol molecules in (II) do not differ significantly in dimensions from each other, or from previously determined quinol dimensions (Wallwork \& Powell, 1980, and references therein), or even from those of the Q^{-}ion. However, there is a tendency for $\mathrm{C}-\mathrm{O}^{-}$to be shorter than $\mathrm{C}-\mathrm{OH}$, for the $\mathrm{C}-\mathrm{C}$ bonds adjacent to $\mathrm{C}-\mathrm{O}^{-}$to be longer, and for the ring CCC angle at this position to be slightly smaller. These changes are in the same direction, but smaller, than those noted (Hough, 1976) for nitrophenolate ions compared with nitrophenols.

We thank the Ministry of Higher Education and Scientific Research of Iraq for a maintenance grant to MMM, the Science and Engineering Research Council for contributing to the cost of the diffractometer, Dr M. J. Begley for helpful discussions, and the late Professor T. J. King for assistance with the computing.

References

Carruthers, J. R. \& Rollett, J. S. (1975). Private communication.
Hough, E. (1976). Acta Cryst. B32, 1154-1162.
Mafrtmann-Moe, K. (1966). Acta Cryst. 21, 979-982.
Mahmoud, M. M. \& Wallwork, S. C. (1979). Acta Cryst. B35, 2370-2374.
Main, P., Lessinger, L., Woolfson, M. M., Germain, G. \& Declerce, J.-P. (1977). MULTAN77. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Powell, H. M. (1948). J. Chem. Soc. pp. 61-73.
Powell, H. M. \& Riesz, P. (1948). Nature (London), 161, 52-53.
Wallwork, S. C. \& Powell, H. M. (1980). J. Chem. Soc. Perkin $^{\text {a }}$ Trans. 2, pp. 641-646.

Acta Cryst. (1991). C47, 1438-1440

Structure of Cheloviolene A from the Sponge Chelonaplysilla violacea

By J. S. Buckleton, R. C. Cambie and G. R. Clark*
Department of Chemistry, The University of Auckland, Auckland, New Zealand

(Received 18 September 1990; accepted 25 October 1990)

Abstract

Decahydro-1,4,4-trimethyl-8-methylene-1-azulenyl)-7-hydroxy-2,8-dioxabicyclo[3.3.0]octan-3-one, $\quad \mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{4}, \quad M_{r}=334 \cdot 46, \quad$ orthorhombic, $P 2_{1} 2_{1} 2_{1}, \quad a=8.614$ (3), $\quad b=13.441$ (1), $\quad c=$ 15.948 (2) $\AA, \quad V=1846.5(9) \AA^{3}, \quad Z=4, \quad D_{m}=$ 1.17 (1), $D_{x}=1.20 \mathrm{~g} \mathrm{~cm}^{-3}$, Mo $K \alpha, \lambda=0.71069 \AA$, $\mu=0.88 \mathrm{~cm}^{-1}, F(000)=712, T=292 \cdot 5(5) \mathrm{K}, R=$ 0.047 for 1230 observed reflections. The X-ray analysis confirms the overall structure of cheloviolene A and establishes the relative stereochemistries at the seven asymmetric centres.

Introduction. The Dendroceratid sponge Chelonaplysilla violacea has yielded a series of related diterpenoid compounds, including aplyviolene (1) for which we have reported a structure determined by X-ray analysis (Buckleton, Bergquist, Cambie, Clark, Karuso \& Rickard, 1986). Hambley, Poiner \& Taylor (1986) have also reported the structure of aplyviolene and of aplyviolacene (2) obtained from

[^0]the same source. The structures of the remaining diterpenoids have been determined from a detailed examination of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra (Taylor et al., unpublished). We record here confirmation of the structure of one of these compounds, cheloviolene A (3), m.p. $434-436 \mathrm{~K},[\alpha]_{D}^{17{ }^{\circ} \mathrm{C}}=+6^{\circ}\left(c 1 \cdot 0 M, \mathrm{CHCl}_{3}\right)$, $\lambda_{\max } 1785$ (γ-lactone), $1630 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C})$.

(1)

(2)

(3)

Table 1. Fractional atomic coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic temperature factors for non- H atoms

$B_{\text {eq }}=\left(8 \pi^{2} / 3\right) \sum_{i} \sum_{j} U_{i j} a_{i}{ }^{*} a_{j}{ }^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$B_{\text {cq }}\left(\AA^{2}\right)$
$\mathrm{C}(1)$	7470 (7)	5687 (3)	1917 (4)	$5 \cdot 3$ (6)
$\mathrm{C}(2)$	8686 (7)	5305 (4)	1299 (4)	5.8 (6)
C(3)	8168 (6)	4510 (5)	690 (3)	5.8 (4)
C(4)	7501 (6)	3540 (3)	1051 (3)	$4 \cdot 2$ (3)
C(5)	5947 (5)	3646 (3)	1528 (3)	$3 \cdot 3$ (2)
C(6)	4635 (6)	4176 (4)	1070 (3)	4.5 (4)
C(7)	3349 (5)	4198 (4)	1713 (3)	4.4 (3)
C(8)	4151 (5)	4441 (3)	2563 (3)	$3 \cdot 2$ (2)
C(9)	5940 (5)	4129 (3)	2425 (2)	2.9 (2)
$\mathrm{C}(10)$	7087 (5)	4941 (3)	2572 (3)	3.7 (3)
C(11)	3175 (5)	3069 (3)	5365 (3)	3.5 (3)
$\mathrm{O}(11)$	2393 (3)	3917 (2)	5328 (2)	4.1 (3)
$\mathrm{O}\left(11^{\prime}\right)$	2949 (4)	2496 (3)	5935 (2)	5.4 (4)
$\mathrm{C}(12)$	4277 (5)	2977 (4)	4654 (3)	3.9 (3)
C (13)	4105 (4)	3908 (3)	4144 (2)	$3 \cdot 0$ (3)
C(14)	3454 (4)	3765 (3)	3250 (2)	2.5 (2)
C(15)	1703 (4)	3915 (3)	3384 (3)	3.0 (3)
$\mathrm{O}(15)$	1583 (3)	4619 (2)	4064 (2)	$3 \cdot 6$ (2)
$\mathrm{O}\left(15^{\prime}\right)$	1070 (3)	3003 (2)	3609 (2)	4.0 (3)
C(16)	2832 (5)	4499 (3)	4597 (3)	$3 \cdot 3$ (3)
$\mathrm{C}(17)$	3941 (6)	5533 (3)	2774 (4)	4.9 (4)
$\mathrm{C}(18)$	8705 (6)	3048 (4)	1622 (4)	$5 \cdot 2(5)$
C (19)	7194 (7)	2845 (6)	301 (4)	7.4 (8)
C(20)	7862 (5)	4962 (4)	3316 (3)	4.9 (4)

Experimental. Crystallization from ethyl acetate/ hexane. The crystal density was measured by flotation in aqueous KI. Crystal $0.44 \times 0.20 \times 0.24 \mathrm{~mm}$, colourless rectangular prism, mounted on Nonius CAD-4 diffractometer, Zr -filtered Mo $K \alpha$ radiation; unit-cell dimensions from 25 reflections $11.8<\theta<$ $13 \cdot 4^{\circ}$; systematic absences $h 00, h=2 n+1 ; 0 k 0, k=$ $2 n+1 ; 00 l, \quad l=2 n+1$ defined space group as $P 2_{1} 2_{1} 2_{1} ; 2098$ unique reflections; $\omega / 2 \theta$ scans, $1 \leq \theta \leq$ $26^{\circ},[(\sin \theta) / \lambda]_{\max } 0.6168 \AA^{-1}, 1230$ with $I>2 \cdot 5 \sigma(I)$; $0 \leq h \leq 11,0 \leq k \leq 17,0 \leq l \leq 20$; three intensity standards checked every 100 reflections showed no non-statistical variation during data collection; Lorentz and polarization corrections applied, absorption corrections by empirical ψ-scan data, max. and min. correction factors 1.0000 and 0.9835 , respectively. The structure was solved by direct methods using SHELXS86 (Sheldrick, 1986) with the best E map revealing positions for all non-H atoms. $F_{\text {obs }}$ refinement of atomic positions, non-H atoms assigned anisotropic thermal parameters, H atoms located in difference map and refined with fixed isotropic temperature factors of $U=0.06 \AA^{2}$. Final weight $w=1 /\left[\sigma^{2}(F)+4.69 \times 10^{-3} F^{2}\right], R=0 \cdot 047, w R$ $=0.050, \quad S=0.65 ; \Delta_{\text {max }} / \sigma=0.132$ for positions, \max. and min. $\Delta \rho$ excursions in final difference map 0.18 and $-0.19 \mathrm{e} \AA^{-3}$ respectively. Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV, pp. 99, 149). Calculations performed with the Enraf-Nonius (1981) Structure Determination Package on a PDP-11 computer for initial data reduction and with SHELX76

Table 2. Bond distances (\AA) and angles $\left({ }^{\circ}\right)$

$\mathrm{C}(1)-\mathrm{C}(2)$	1.528 (8)	$\mathrm{C}(9)-\mathrm{C}(10) \quad 1.4$	1.491 (6)
$\mathrm{C}(1)-\mathrm{C}(10)$	1.485 (7)	$\mathrm{C}(10)-\mathrm{C}(20) \quad 1.3$	1-362 (7)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.511 (8)	$\mathrm{C}(11)-\mathrm{O}(11) \quad 1.3$	$1 \cdot 325$ (5)
$\mathrm{C}(3)-\mathrm{C}(4)$	1.536 (8)	$\mathrm{C}(11)-\mathrm{O}\left(11^{\prime}\right) \quad 1.207$	1-207 (6)
$\mathrm{C}(4)-\mathrm{C}(5)$	1.546 (7)	$\mathrm{C}(11)-\mathrm{C}(12) \quad 1.4$	1.484 (6)
$\mathrm{C}(4)-\mathrm{C}(18)$	1.531 (7)	$\mathrm{O}(11)-\mathrm{C}(16) \quad 1.4$	1.455 (5)
$\mathrm{C}(4)-\mathrm{C}(19)$	1.540 (9)	$\mathrm{C}(12)-\mathrm{C}(13) \quad 1.4$	1.499 (6)
$\mathrm{C}(5)-\mathrm{C}(6)$	1.522 (6)	$\mathrm{C}(13)-\mathrm{C}(14) \quad 1.5$	1.545 (5)
$\mathrm{C}(5)-\mathrm{C}(9)$	1.571 (6)	$\mathrm{C}(13)-\mathrm{C}(16) \quad 1.5$	1.534 (6)
$\mathrm{C}(6)-\mathrm{C}(7)$	1.509 (6)	$\mathrm{C}(14)-\mathrm{C}(15) \quad 1.53$	1.537 (5)
$\mathrm{C}(7)-\mathrm{C}(8)$	1.556 (6)	$\mathrm{C}(15)-\mathrm{O}(15) \quad 1.4$	1.442 (5)
$\mathrm{C}(8)-\mathrm{C}(9)$	1.612 (6)	$\mathrm{C}(15)-\mathrm{O}\left(15^{\prime}\right) \quad 1.3$	1.389 (5)
$\mathrm{C}(8)-\mathrm{C}(14)$	1.545 (6)	$\mathrm{O}(15)-\mathrm{C}(16) \quad 1 \cdot 3$	1.380 (5)
$\mathrm{C}(8)-\mathrm{C}(17)$	$1 \cdot 517$ (6)		
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(10)$	112.3 (4)	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	114.9 (3)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	116.7 (5)	$\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(9)$	122.1 (4)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	118.0 (5)	$\mathrm{C}(1)-\mathrm{C}(10)-\mathrm{C}(20)$	119.3 (4)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$115 \cdot 4$ (4)	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(20)$	118.5 (4)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(18)$	109.6 (4)	$\mathrm{O}(11)-\mathrm{C}(11)-\mathrm{O}\left(11^{\prime}\right)$	') 120.0 (4)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(19)$	$106 \cdot 7$ (4)	$\mathrm{O}(11)-\mathrm{C}(11)-\mathrm{C}(12)$	111.2 (4)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(18)$	109.5 (4)	$\mathrm{O}\left(11^{\prime}\right)-\mathrm{C}(11)-\mathrm{C}(12)$	2) 128.7 (4)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(19)$	$106 \cdot 8$ (4)	$\mathrm{C}(11)-\mathrm{O}(11)-\mathrm{C}(16)$) 111.5 (3)
$\mathrm{C}(18)-\mathrm{C}(4)-\mathrm{C}(19)$) 108.4 (4)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$) 106.4 (4)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	116.8 (4)	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$) $115 \cdot 6$ (3)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(9)$	119.3 (4)	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(16)$) $104 \cdot 4$ (3)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(9)$	$103 \cdot 9$ (3)	$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(16)$) $103 \cdot 8$ (3)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$103 \cdot 2$ (4)	$\mathrm{C}(8)-\mathrm{C}(14)-\mathrm{C}(13)$	116.2 (3)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$105 \cdot 5$ (4)	$\mathrm{C}(8)-\mathrm{C}(14)-\mathrm{C}(15)$	113.8 (3)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$104 \cdot 5$ (3)	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$) $102 \cdot 2$ (3)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(14)$	108.8 (3)	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{O}(15)$	105.1 (3)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(17)$	$110 \cdot 1$ (4)	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{O}\left(15^{\prime}\right)$	(5) 107.8 (3)
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(14)$	108.4 (3)	$\mathrm{O}(15)-\mathrm{C}(15)-\mathrm{O}\left(15^{\prime}\right)$	(5) 110.9 (3)
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(17)$	113.3 (3)	$\mathrm{C}(15)-\mathrm{O}(15)-\mathrm{C}(16)$) 109.3 (3)
$\mathrm{C}(14)-\mathrm{C}(8)-\mathrm{C}(17)$) 111.4 (4)	$\mathrm{O}(11)-\mathrm{C}(16)-\mathrm{C}(13)$	106.5 (3)
$\mathrm{C}(5)-\mathrm{C}(9)-\mathrm{C}(8)$	$103 \cdot 6$ (3)	$\mathrm{O}(11)-\mathrm{C}(16)-\mathrm{O}(15)$	110.7 (3)
$\mathrm{C}(5)-\mathrm{C}(9)-\mathrm{C}(10)$	$116 \cdot 3$ (3)	$\mathrm{C}(13)-\mathrm{C}(16)-\mathrm{O}(15)$	109.1 (3)

(Sheldrick, 1976) on the University of Auckland IBM 4341 computer for refinement. Diagrams were produced using ORTEP (Johnson, 1965).

Discussion. Atomic coordinates for non-H atoms are listed in Table 1.* Bond distances and angles are given in Table 2. The atomic numbering and molecular geometry are shown in Fig. 1, which does not necessarily represent the true chirality of the molecule.

The X-ray analysis confirms the overall structure for cheloviolene A (3) and establishes the relative stereochemistries at the seven asymmetric centres. The bond length $\mathrm{C}(8)-\mathrm{C}(9)$ is quite long [$1.612(6) \AA$], presumably as a result of sterically induced strain, but all other bonds are normal. The bond angles at the $s p^{3}$-hybridized C atoms reveal evidence for considerable strain in the molecule, especially in the region of the fusion of the sevenand five-membered rings and the link to the other half of the molecule. Thus $\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(9)$ is

[^1]

Fig. 1. The molecular geometry and atomic numbering for cheloviolene A (3). Atoms are represented as 50% probability ellipses.
119.3 (4) ${ }^{\circ}$ whereas $\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(9)$ is $103.9(3)^{\circ}$; $\mathrm{C}(5)-\mathrm{C}(9)-\mathrm{C}(10)$ is $116 \cdot 3(3)^{\circ}$ whereas $\mathrm{C}(5)-$ $\mathrm{C}(9)-\mathrm{C}(8)$ is $103.6(3)^{\circ} ; \mathrm{C}(8)-\mathrm{C}(14)-\mathrm{C}(13)$ is $116.2(3)^{\circ}$ whereas $\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$ is $102 \cdot 2$ (3) ${ }^{\circ}$.
The molecules pack into the unit cell in the manner shown in the stereopair diagrams of Fig. 2. The only significant intermolecular interaction is a hydrogen bond between $\mathrm{O}\left(15^{\prime}\right)$ and $\mathrm{O}\left(11^{\prime}\right)[\mathrm{O} \cdots \mathrm{O}$ $2 \cdot 86$ (1) \AA]. Seven other intermolecular contacts are in the range $3 \cdot 31-3 \cdot 46 \AA$.

Fig. 2. Stereopair diagrams for cheloviolene A (3).

References

Buckleton, J. S., Bergquist, P. R., Cambie, R. C., Clark, G. R., Karuso, P. \& Rickard, C. E. F. (1986). Acta Cryst. C42, 1846-1848.
Enraf-Nonius (1981). Structure Determination Package. EnrafNonius, Delft, The Netherlands.
Hambley, T. W., Poiner, A. \& Taylor, W. C. (1986). Tetrahedron Lett. 27, 3281-3282.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Sheldrick, G. M. (1986). SHELXS86. Program for the solution of crystal structures. Univ. of Göttingen, Germany.

Acta Cryst. (1991). C47, 1440-1442

2,2,4,4,6,6-Hexamethyl-1,3,5-triphenylcyclotrisilazane

By Alexander J. Blake* and E. A. V. Ebsworth
Department of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, Scotland

and Józef Kulpiński and Zygmunt Lasocki*
Institute of Polymers, Technical University, Żwirki 36, 90-924 Lódź, Poland

(Received 10 August 1990; accepted 25 October 1990)

Abstract

C}_{24} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{Si}_{3}, M_{r}=447 \cdot 81\), triclinic, $P \overline{1}, a$ $=6.8234$ (11), $b=11 \cdot 1822$ (19), $c=17.751$ (3) \AA, α $=75.900$ (12), $\beta=79.226$ (13), $\gamma=81.998$ (9$)^{\circ}, ~ V=$ $1284 \AA^{3}, Z=2, \quad D_{x}=1.158 \mathrm{Mg} \mathrm{m}^{-3}, \bar{\lambda}($ Мо $K \alpha)=$ $0.71073 \AA, \quad \mu=0.194 \mathrm{~mm}^{-1}, \quad F(000)=480, \quad T=$ $298 \mathrm{~K}, R=0.0488$ for 2374 unique observed reflections. The six-membered $\mathrm{Si}_{3} \mathrm{~N}_{3}$ ring is markedly non-planar and the N-phenyl rings are almost perpendicular to the local $\mathrm{Si}-\mathrm{N}-\mathrm{Si}$ planes.

Introduction. The structure of the title compound (I) had been incorrectly assigned to a reaction product

[^2]0108-2701/91/071440-03\$03.00
which was subsequently shown to be the homologous four-membered ring compound 2,2,4,4-tetramethyl-1,3-diphenylcyclodisilazane (II). The crystal structure of (II) has been published (Párkányi, Argay, Hencsei \& Nagy, 1976) and since the synthesis of (I) has recently been reported (Dejak, Kulpiński, Lasocki \& Piechucki, 1987), we felt that it was timely to determine the structure of this compound.

Experimental. Colourless needle $0.89 \times 0.15 \times$ 0.11 mm), Stoe Stadi-4 four-circle diffractometer, unit-cell parameters from 2θ values of 22 reflections measured at $\pm \omega\left(2 \theta=30-32^{\circ}\right)$. For data collection, graphite-monochromated Mo $K \alpha$ X-radiation, $\omega-2 \theta$
© 1991 International Union of Crystallography

[^0]: * Author to whom correspondence should be addressed.

[^1]: * Lists of structure factors, thermal parameters and H -atom positions have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53688 (10 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^2]: * Authors for correspondence.

